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have many representatives, there is one parameter only and 
the parameter varies over a wide range. These properties are 
necessary for the check and are hardly offered by other 
structures. From a purely crystallographic point of view, 
the representatives belong to the same structure type and 
with the hard-sphere model in mind, a continuous trend in 
c/a values might be expected. However, various types of 
coordination may be predicted depending on c/a. At 
particular values of c/a, the coordination changes and is 'not 
defined' (the interatomic distances show two gaps of equal 
width). If coordination and our definition of it have a chem- 
ical background, these particular c/a values are unfavourable 
and should not be realized. Actually, in the plots of c/a versus 
rA/rB as shown in Fig. 1, there appear families of representa- 
tives with breaks at c/a values which are in acceptable 
agreement with the predicted change of the coordination 
polyhedra. Other interpretations of the plots do not disprove 
the explanation given here. Laves (1956) describes various 
types of homogeneous and heterogeneous connexions in the 
A1B2 type, which have some analogy with the coordination 
polyhedra shown in Fig. 1. Laves's view implies a correlation 
between c/a and rA/r~ which is not realized at values of 
c/a>0.9. Pearson (1972) discusses a geometrical (which 
means coordination) and a bond factor in the A1B2 type. 
Coordination is not clearly defined and implies a contact 
and a distance property. Sch6nberg (1954) and also Schubert 
(1964) refer to the correlation between c/a and ra/rB of the 
NiAs structure in terms of a hard-sphere model; a break near 
c/a ~-1-8 is not considered. The representatives in the NiAs 
plot with c/a ~ 2 are compounds of the WC type. With their 
actual axial ratio c/a~-1, they might be regarded as A1B2 
representatives with one-half occupation of the B position 

1 2 1~ or as h.c.p, representatives (M at 000, X at 3-,7, :r) with trigonal 
prismatic coordination which is defined for c/a~-0.8 to 1-2 
in the h.c.p, structure. In all cases the WC compounds fit in a 
region of well defined coordination. In the AIB2 and NiAs 
structures, the two components change coordination at 
slightly different values of c/a; in Fig. 1, mean values are 
given. 

Fig. 1 seems to support the view that the 'tendency to good 
coordination' is a chemical principle and that the 1/d 
largest-gap procedure puts it on a measurable basis. Of 

course, predictions of unfavourable metrics may differ from 
reality to some extent owing to the complexity of the 
matter. The largest-gap limit does not deal with the radius 
ratio and with the contact of atoms and is an additional 
rather than a competitive view. Nevertheless, there are 
arguments to regard atoms as 'force centres' rather than as 
'contacting spheres' (Brunner, 1971, 1975). If a structure type 
is defined as a particular linkage of particular coordina- 
tion polyhedra, then the fields of representatives in Fig. 1 may 
be divided into three AIB2 and possibly two NiAs structure 
types. A further type of NiAs is conventionally described as 
an ABAC close-packed structure. 

The number of atoms in the coordination polyhedron is 
generally called coordination number, CN. It is to be dis- 
tinguished from a weighted coordination number, WCN. A 
suitable weighting procedure is as follows: the weight drops 
linearly with 1/d; for neighbours with distance 1/dl = 1, the 
weight is 1 and for neighbours following next after the largest 
gap it is 0. As an example, tungsten has C N = 1 4  and 
WCN = 11-9. For metallic structures, the average over all 
sites, AWCN, is an informative number and so far it seems 
that 12 is the uppermost AWCN. Encouraging results 
regarding the AWCN of some intermetallic compounds have 
been found by Bhandary & Girgis (1976). 
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The quantity e, which is necessary to calculate the normalized structure factor E(h) for a reflexion, is equal to the ratio of 
the number of symmetry-equivalent positions in a unit cell to the number of point-group equivalent (not Laue-group 
equivalent) reflexions. Values of e are tabulated for all point groups. 

The normalized structure factor E(h) ofa reflexion, commonly 
used in direct methods, is defined by 

N 2 71/2 
E(h)=F(h)/ e ~ l f . ( h  ) ]  , 

* Editorial note. This paper overlaps considerably with that of 
Stewart & Karle (1976). It is printed in full, as the approach is some- 
what simpler and the table of results is more complete. 

where the summation is taken over the atoms in a unit cell 
andf ,  is the atomic form factor of the nth atom corrected for 
thermal vibration. The quantity e is related to the mean 
square structure amplitudes as (International Tables for 
X-ray Crystallography, 1974) 

N 
< IF(h)l 2> = ~ E f 2 ( h )  • 

n = l  

AC 33A-15" 



2 2 8  S H O R T  C O M M U N I C A T I O N S  

T a b l e  1. Values o f  e f o r  all point  groups 

M is the rank of  the point  group. For  a non-primitive cell, all figures must be multiplied by the multiplicity of the compound  lattice, L (see text). 

(i) Triclinic, monoclinic, o r thorhombic  

Point  group M hkl Okl hOl hkO bOO OkO OOl 
1 1 1 1 1 1 1 1 1 
-f 2 1 1 1 1 1 1 1 
2* 2 1 1 1 1 1 2 1 
m* 2 1 1 2 1 2 1 2 
2/m* 4 1 1 2 1 2 2 2 
222 4 1 1 1 1 2 2 2 
rnm2~f 4 1 2 2 1 2 2 4 
mmm 8 1 2 2 2 4 4 4 

* b axis unique. 
t c axis unique. 

(ii) Tet ragonal  

Point  group M hkl hOl, Okl hhl, hfTl hkO hhO, hflO hO0, OkO OOl 
4 4 1 1 1 1 1 1 4 
7~ 4 1 1 1 1 1 1 2 
4/m 8 1 1 1 2 2 2 4 
422 8 1 1 1 1 2 2 4 
4ram 8 1 2 2 1 2 2 8 
74 2 rn 8 1 1 2 1 2 2 4 
74m2 8 1 2 1 1 2 2 4 
4/mmm 16 1 2 2 2 4 4 8 

(iii) Trigonal and hexagonal 

(a) Hexagonal  cell 

hhl, h,2h, l hhO, h,2h,0 hOl, Okl hO0, OkO 
Point  group M hkl hkO 2h,]i,l 2h f , 0  hhl htiO 001 

3 3 1 1 1 1 1 1 3 
-3 6 1 1 1 1 1 1 3 
312 6 1 1 1 1 1 2 3 
321 6 1 1 1 2 1 1 3 
31m 6 1 1 2 2 1 1 6 
3ml 6 1 1 I 1 2 2 6 
31m 12 1 1 2 2 1 2 6 
3ml 12 1 1 1 2 2 2 6 
6 6 1 1 1 1 1 1 6 

6 1 2 1 2 1 2 3 
6/m 12 1 2 1 2 1 2 6 
622 12 1 1 1 2 1 2 6 
6rnm 12 1 1 2 2 2 2 12 
~m2 12 1 2 1 2 2 4 6 
62m 12 1 2 2 4 1 2 6 
6/mmm 24 1 2 2 4 2 4 12 

(b) Primitive rhombohedra l  cell 

hhl, hkh, hll 
hkl hhO, hOh, Oll 

Okl, hOl, hkO hhh, hhh, hhh 
Point  group M hhl, hkh, hll h00, 0k0, 001 hh0, hOb, Oll hhh 

3 3 1 1 l 3 
-3 6 1 1 1 3 
32 6 1 1 2 3 
3m 6 1 2 1 6 
3m 12 1 2 2 6 

(iv) Cubic 

hhl, hhl Okl hhO, hhO 
hkh, hkli hhh hOl hOh, hOfl 

Point  group M hkl hll, hJl hhh, hhh, hhh hkO 0ll, O-ll hO0, OkO, 001 
23 12 1 1 3 1 1 2 
m3 24 1 l 3 2 2 4 
432 24 1 1 3 1 2 4 
2~3m 24 1 2 6 1 2 4 
m3m 48 1 2 6 2 4 8 
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An expression for e was derived by Karle & Hauptman 
(1956) in rather a complicated form, and the physical meaning 
of the e value was discussed by Wilson (1950). This paper 
shows that e is equal to the ratio of the number of symmetry- 
equivalent positions in a unit cell to the number of point- 
group equivalent reflexions without Friedel's law. 

Let the sth equivalent position r~ of a given position r be 
generated by operating a 3 x 3 rotation matrix Iqs to r and 
then by adding a translation vector L: 

rs = Rsr + ts. 

We consider a structure composed of many similar isotropic 
atoms randomly distributed in an asymmetric unit. The 
structure factor can be written in the form: 

N/M M 

F(h)= ~ ~ j~ exp(2rcih.rj~) 
j = l  s = l  

N/M F M ] 

= ~if~'E,=~1 exp (2rcihs. rj)exp (2~zih. t~)], (1) 

where the subscript j runs through the atoms in an asymme- 
tric unit, h~--hlq~ is the sth equivalent index for h (Waser, 
1955) and M is the number of equivalent positions in a unit 
cell. 

First let us assume that the cell is primitive and each com- 
ponent ofts is 0(mod 1) for all s. The equation (1) then reduces 
to the form: 

 Es  exp,2 ihs rj, 1 ,2, 
For a general index h there are M different indices h~...hM, 
corresponding to M independent Iq matrices, and the number 
of equivalent reflexions, m, is equal to M. For a certain kind 
of special index m may be less than M, and M/m terms in the 
square bracket of equation (2) have a common index hs. 
In general we obtain 

N[M 

F(h)= ~ f~(M/m) ~ exp (2rtihs. rj), 
j = l  s = l  

and this expression immediately leads to the mean square 
structure factors as 

N/M N 

(IF(h)l 2) '~ Z (MZ/m)fZ=(M/m) Z f2. (3) 
j = l  n = l  

The above result is valid also for a case in which some ts's 
are different from lattice vectors. Even in such a case, ex- 
ponential factors exp (27zih. ts) in equation (1) present no new 
problems for most kinds of indices, and the relation (3) can 

be obtained from (1) in a similar way as from (2). The 
special kinds of indices to be considered are those which are 
associated with the space-group absences. As far as non- 
vanishing reflexions are concerned, however, relation (3) is 
valid because for these reflexions we always have, by 
selecting a proper origin of the unit cell, 

exp (2nih. ts)= 1. (4) 

This can be seen, for example, by considering a screw axis pq 
along the b axis. The index h we are concerned with is 0k0 
with k=pn. Since the relevant ts has the form (tl, nq/p, t3 )  , 

relation (4) is obviously satisfied. A similar situation can also 
be found for glide planes. A strict proof of relation (4) for a 
non-vanishing reflexion will be given elsewhere (Iwasaki, 
1977). 

If the cell is non-primitive, the same index hs always 
appears L times in the square bracket of (1). Here L is the 
multiplicity of the compound lattice: 2 for a body or base- 
centred cell, 3 for a hexagonal-rhombohedral and 4 for a 
face-centred. A similar calculation leads again to the same 
result as (3) for a non-vanishing reflexion, provided that N 
is the number of atoms in the compound unit cell and M is 
the number of equivalent positions in the same unit cell. 

Therefore, we always have 

e(h) = M/m(h), (5) 

i.e. the quantity e for a given index h is equal to the ratio of 
the number of space-group equivalent positions in the unit 
cell to the number of point-group equivalent reflexions for 
that reflexion. It must be noted that m is not the number of 
Laue-group equivalent reflexions which is known as the 
multiplicit__y_y of a plane in powder diffractometry" reflexions 
hkl and hkl are not equivalent for non-centrosymmetric 
structures. 

The ~ values based on the table of equivalent reflexions 
(Iwasaki, 1971) are listed in Table 1. 
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Recently tabulated values of dispersion corrections for X-ray atomic scattering factors are misleading since they imply 
an unrealistically high reliability and do not take into account their variation with sin 0/2, which can in general be quite 
significant. 

In a recent paper Cromer (1976) has given the results of new 
calculations for the values of the dispersion corrections Af' 
and Af" for Co K ~  radiation which were made in response 
to numerous requests. Previous values for the dispersion 

corrections for Co Ke radiation were in fact published 
(Cooper, 1963) as a function of both atomic number and 
sin 0/2. Comparison of these two sets of values shows quite 
large differences for some elements, but although the new 


